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Abstract

Deep Nonnegative Matrix Factorization (deep NMF) has recently emerged as a valuable
technique for extracting multiple layers of features across different scales. However, all
existing deep NMF models and algorithms have primarily centered their evaluation on
the least squares error, which may not be the most appropriate metric for assessing
the quality of approximations on diverse datasets. For instance, when dealing with
data types such as audio signals and documents, it is widely acknowledged that (-
divergences offer a more suitable alternative. In this paper, we develop new models
and algorithms for deep NMF using some [-divergences, with a focus on the Kullback-
Leibler divergence. Subsequently, we apply these techniques to the extraction of facial
features, the identification of topics within document collections, and the identification
of materials within hyperspectral images.

1 Introduction
Deep NMF seeks to approximate an input data matrix X € R"*", as follows:
X =~ WlHl, W1 ~ WQHQ, . WL,1 ~ WLHL; (1)

where W, € R and H, € ]R:fwe’l are the factors of the /th layer matrix factoriza-
tion, Wy_y =~ W,Hy, for ¢ =1,2,..., L, and with ry = n. This approach yields a total
of L layers of decompositions for X:

X =~ WlHl, X =~ WQHQHl, RN X ~ WLHLHL_1 H1 (2)

For example, let X € R’"*" represent a hyperspectral image, with m spectral bands
and n pixels, where X (:, 7) is the spectral signature of the jth pixel and X (i,:) is the
vectorized image corresponding to the ith wavelength. Then the first layer of the fac-
torization, X ~ W, H,, is such that W, € R"*"™ contains the spectral signatures of r,
materials, while H, € ]Rfrl ™ contains the so-called abundance maps that indicate which



material is present in which pixel and in which proportion. Figure 1 (a) provides an ex-
ample where the extracted materials include grass, trees, roof tops, and roads. This is
the same interpretation as for NMF [Ma et al., 2013]. At the second layer, W; ~ Wy H,
so that W, € R’ contains the spectral signatures of higher-level materials; for ex-
ample vegetation vs. non-vegetation in Figure 1 (b). In other words, W5 will merge
similar materials in a single material (e.g., grass and trees in the vegetation). The fac-
tor H, € R™*™ indicates how the low-level materials are combined into high-level
materials.
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Figure 1: Deep NMF applied on the Urban hyperspectral image, which is an aerial
image of a Walmart in Copperas Cove, Texas. We can for example easily identify the
roof top and the parking lot of the store; see the fourth and fifth image in (a), respec-
tively. Using Deep NMF with two layers, we obtain the following: (a) Layer 1 with
r1 = 6 contains the abundance maps H; corresponding to the spectral signatures in
W1y, and (b) Layer 2 with ro = 2 contains the abundance maps HsH; corresponding
to the spectral signatures in Ws. As the factorization unfolds, deep NMF generates
denser abundance maps which are combinations of abundance maps from previous lay-
ers. Here, the first level extracts 6 materials (including grass, roof tops and dirt, trees,
other roof tops, road and dirt), which are merged into vegetation vs. non-vegetation at
the second layer.

We will make the assumption that the ranks decrease as the factorization proceeds,
specifically, that 1 < 7, for all £. This rank reduction is the most natural and common
scenario. It is important to note that employing 4, > 7, leads to overparametrization,
which can have its merits in certain contexts, such as cases involving implicit regular-
ization, as discussed by Arora et al. [2019]. However, our primary objective in this
paper is not to pursue overparametrization.

There has been a recent surge of research on deep NMF. It began with the pioneering
work of Cichocki and Zdunek [2006, 2007], which focused on multilayer NMF tech-
niques that sequentially decompose the input matrix X: it first decomposes X = W, H;
using NMF, then W; = W5 H,, then Wy, = W3Hj3 and so on, following (1). As it is
sequential, Multilayer NMF does not consider a global optimization problem trying to
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balance the errors between layers. Subsequently, Trigeorgis et al. [2014, 2016] intro-
duced deep NMEF, presenting a model closely related to the formulation in (2). Deep
NMF first performs multilayer NMF but then reoptimizes the factors at all layers it-
eratively; see Section 2 for more details.. Deep NMF has found applications across a
diverse range of fields, including recommender systems [Mongia et al., 2020], com-
munity detection [Ye et al., 2018], and topic modeling [Will et al., 2023]. For more
comprehensive insights and surveys on deep matrix factorizations, readers can refer
to De Handschutter et al. [2021] and Chen et al. [2022]. These surveys offer up-to-date
overviews of the field and its recent advancements. To the best of our knowledge, it
is noteworthy that all existing deep NMF models employ the Frobenius norm, which
corresponds to the least squares error, as the standard metric to assess the reconstruc-
tion error at each layer. Furthermore, a significant portion of the literature has tended to
overlook the modeling aspects inherent to deep NMFE. Consequently, many studies have
adopted inconsistent models throughout the different layers of the factorization process,
as highlighted by De Handschutter and Gillis [2023], that is, that the objective function
optimized at different layers is not the same preventing a meaningful model (because
parameters are optimized following different models) and convergence guarantees; see
Section 2 for more details.

Contribution and outline of the paper In this paper, we first focus on the modeling
aspect of deep NMF in Section 2. We explain how to use meaningful regularizations
and why a layer-centric loss function is more appropriate than a data-centric one when it
comes to identifiability (that is, the uniqueness of the solution up to scaling and permu-
tation ambiguities). This was observed experimentally by De Handschutter and Gillis
[2023] but not justified from a theoretical viewpoint. Then, in Section 3, we propose
new regularized models for deep NMF based on S-divergences, consistent across the
layers, and design algorithms for solving the proposed deep NMF models, with a fo-
cus on the Kullback-Leibler divergence (5 = 1). As a by-product, we will provide
multiplicative updates (MU) for a problem of the type
min Dg(X,WH) 4+ A\Dg(W, W),

where X, H and W are fixed, \ is a positive penalty parameter, and Dg is a 8-
divergence with 5 € {0,0.5,1,1.5,2}. Finally, in Section 4, we use the newly proposed
models and algorithms for facial feature extraction, topic modeling, and the identifica-
tion of materials within hyperspectral images.

2  What Deep NMF model to use?

De Handschutter and Gillis [2023] introduced two distinct loss functions specifically
designed for deep NMF:

1. A data-centric loss function (DCLF) defined as
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where D(A, B) is a measure of distance between A and B, and the \;’s are positive
penalty parameters. This loss function minimizes a weighted sum of the errors in
the decompositions of X at each of the L layers, as given in (2).

2. A layer-centric loss function (LCLF) defined as

L(Hy,Hyy ..., H; Wy, Wo, ..., W) = M DWy_1,W,H,), 4)

Mh

(=1

where W, = X. This loss function minimizes a weighted sum of the errors at each
layer, as given in (1).

In the majority of previous works, the loss function minimized at each layer was not
consistent across layers, that is, the optimization of each factor does not come from
the same (global) objective function; see Table 1 for an example of a 3-layer model
used by Trigeorgis et al. [2016]. As a result, their algorithms generally did not con-

| Layer [ | Objective function for H, | Objective function for IV, |

1 | X — WaHyHy |7 | X — WiH ||
2 HX — W3H3H2H1H% HX — WzHngH%
3 X — WaHs HoHy |2 | ||X — WaHy HoH, ||

Table 1: Objective functions minimized by Trigeorgis et al. [2016] for each factor for
L = 3. Table adapted from De Handschutter and Gillis [2023].

verge and often exhibited poorer performance compared to the loss functions introduced
by De Handschutter and Gillis [2023].

Layer centric vs. data centric It was empirically observed by De Handschutter and
Gillis [2023] that LCLF (as defined in (4)) outperformed DCLF (as defined in (3)) and
the state of the art. This superior performance was observed across various synthetic
and real datasets, and it extended to the recovery of ground truth factors. Interestingly,
the reason behind this performance is not a matter of chance but can be understood via
identifiability considerations, as indicated in the subsequent sections. This insight helps
provide a better understanding of the observed empirical results and offers a rationale
for the preference of LCLF in the context of deep NMF.

2.1 Identifiability of NMF

One of the primary reasons why LCLF is found to be more efficient than DCLF lies
in the fact that LCLF possesses better identifiability properties compared to DCLF (see
Section 2.2). To better understand this distinction, it is beneficial to revisit some of the
key NMF identifiability results.



The sufficiently scattered condition A nonnegative matrix H € R’*" satisfies the
sufficiently scattered condition (SSC)1 if

C={zreR ||zl = qllzlz} <  cone(H)={zx|z= Hy,y >0},

for some ¢ < +/r — 1. The set C is the intersection of the nonnegative orthant with
a second-order cone. The SSC implies that [ is sufficiently sparse, in particular it
requires H to have at least » — 1 zeros per row; see the discussions by Fu et al. [2019]
and [Gillis, 2020, Chap. 4], and the references therein. Based on the SSC, we have the
following identifiability result for NMF.

Theorem 1. [Huang et al., 2013] Let X = W*H* be a rank-r NMF of X, where W*'
and H* satisfy the SSC. Then any other rank-r NMF of X, X = W H, corresponds to
(W*, H*), up to permutation and scaling of the columns of W* and rows of H*.

Imposing the SSC on both factors, W and H, can sometimes be overly restrictive.
For instance, in hyperspectral imaging, it makes sense for ' to have this constraint
because its rows often represent sparse abundance maps. However, assuming the SSC
to W is typically not appropriate since it is expected to be dense in many cases. To
address this limitation and provide more flexibility, researchers have introduced reg-
ularized NMF models. Among these, the minimum-volume NMF is one of the most
effective approaches, both from a theoretical perspective and in practical applications.

Minimum-volume NMF Minimizing the volume of the columns of W is a popular
and powerful NMF regularization technique. The most prevalent form of this regular-
ization is achieved by utilizing logdet(W T 1¥/) under normalization constraints on either
W or H, see e.g., Fu et al. [2019] and [Gillis, 2020, Chap. 4]. This leads to identifiabil-
ity/uniqueness of NMF, as stated in Theorem 2. In practice, we use logdet(W TW + 1)
(with the addition of a small parameter §) for numerical stability; see the discussion
by Leplat et al. [2019].

Theorem 2 (Fu et al. [2015, 2018], Leplat et al. [2020]). Let X = W*H* be a rank-r
NMF of X, where rank(W*) = r and H* satisfies the SSC. Then any optimal solution
of the following problem

mmi/n det(W'™W) st X=WH andH'e=e/[Fuetal,2015]

or He = e [Fuetal., 2018]
orW'le=c¢e [Leplat et al., 2020],

where e denotes the vector of all ones of appropriate dimension, correspondsto (W*, H*),
up to permutation and scaling of the columns of W* and rows of H*.

Minimizing the volume of the columns of I also has several important implica-
tions:

1There are several definitions of the SSC, see the discussion in [Gillis, 2020, Chap. 4], and we choose
here the simplest from Lin et al. [2015].



* By encouraging the columns of 11 to be closer to the data points, this regularization
enhances the interpretability of the features represented by these columns.

* The regularization leads to sparser factors /. When the columns of W are close to
the data points, it implies that more data points are located near the faces of the cone
generated by these columns. Consequently, this results in a sparser representation
of the data in the factor /, where many elements are driven towards zero.

¢ In scenarios where the factorization rank has been overestimated, min-vol NMF
can perform automatic rank detection by setting some of the rank-one factors to
zero [Leplat et al., 2019].

2.2 Discussion on identifiability of regularized deep NMF

Regularization plays a crucial role in enhancing the interpretability and identifiability
of deep NMF, similar to its importance in standard NMF, as illustrated by Theorem 2.
When designing a deep NMF model, careful consideration should be given to which
factor should be regularized and how it should be done. In the context of LCLF, where
Wy is factorized at each layer, it is important to note that overly sparse W, matrices can
be challenging to approximate with NMF. For instance, the identity matrix, which is
very sparse, has a unique NMF representation of maximum size (I = [ - I). Therefore,
it makes sense to focus on minimizing the volume of W, matrices and/or maximizing
the sparsity of H, matrices since this will generate denser I/, matrices.

By the aforementioned reasons, adopting the min-vol NMF approach is a reasonable
choice to establish a baseline regularization for deep NMF. In the context of LCLF, at
each layer, min-vol LCLF aims to find the solution with the minimum volume for the
corresponding W,. However, applying Theorem 2 to each layer individually is not pos-
sible because it would require the 11/, matrices to have full rank, which is precluded by
construction due to the hierarchical structure where W,_; = W,H, and the assumption
ry < ry_1. Fortunately, empirical observations suggest that min-vol NMF can recover
W even when it is rank-deficient, provided that H is sufficiently sparse, as demonstrated
by Leplat et al. [2019]. Additionally, the literature includes sparse NMF models, such
as those discussed by Abdolali and Gillis [2021], which offer identifiability even in the
rank-deficient case. These observations underscore the adaptability and effectiveness
of min-vol regularization in various settings within deep NMF, despite rank-deficiency
challenges. We therefore have the following intuition: when the sparsity of Hy is suf-
ficient, min-vol deep NMF employing the LCLF should exhibit identifiability, provided
that each layer, W,_1 = W,H,, is identifiable.

In the context of DCLF, achieving identifiability necessitates that the products [ [}_, H,
are sufficiently sparse for each layer, where p ranges from 1 to L. However, the product
of sparse nonnegative matrices tends to be denser than the individual factors. Conse-
quently, it becomes significantly less likely for the product of these matrices to exhibit
sparsity, which is essential for DCLF to be identifiable. On the other hand, a necessary
condition for the product H = H; Hs with H; > 0 and Hs > 0 to satisfy the SSC is that
H, satisfies the SSC, because cone(H) C cone(H,). Remarkably, even when both H;
and H individually satisfy the SSC, it remains rather unlikely for their product H, H;



to satisfy the SSC. In fact, for H, H; to satisfy the SSC, H; and H; need to be extremely
sparse, since HyH; is typically much denser than any of the two. Let us illustrate this
observation on a simple example.

Example 1 (The product of matrices satisfying the SSC typically does not satisfy the
SSCO). Letry =3, 71 = 6, and
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It can be shown that H, satisfies the SSC if and only if w < 0.5 [Huang et al., 2013].
The matrix H, is the sparsest non-trivial case for a rank-three matrix that satisfies the
SSC, since having columns with two zero entries corresponds to a stronger condition,
referred to as separability, which makes NMF much easier to handle, because columns
of W are present in the data set, up to scaling [Arora et al., 2012]. Now, for any
matrix H, € R%*™ having 3 nonzeros entries per column, HyH, will not have any
entry equal to zero, for any w > 0 (since the sum of any 3 columns of H, is dense).
Hence HyHy cannot satisfy the SSC for any matrix H, with 3-sparse columns, that is, 3
non-zero entries per columns, as the SSC requires some degree of sparsity (see above),
and hence the factorization X = Wy(HsH;) will not be unique. In fact, a necessary
condition for the uniqueness of the NMF X = W H is that the supports of the rows of
H are not contained in one another [Huang et al., 2013].

On the other hand, matrices H, with three non-zeros per column, and sufficiently
many columns, are likely to satisfy the SSC. For example, we generated randomly 1000
matrices with 100 columns and with 3 non-zeros entries per column, where the position
of the non-zero entries are randomly selected, and the non-zero entries are generated
with the uniform distribution in the interval [0,1]. Among these 1000 sparse matrices,

all satisfied the SSC2.

In summary, the consideration of the product of the H, matrices within the factor-
izations in DCLF makes it less likely to achieve identifiability compared to LCLF. This
is primarily due to the tendency of these products to become increasingly denser as the
factorization unfolds.

3 Deep 5-NMF: models and algorithms

In this section, we propose two new deep 5-NMF models, describe the algorithms
for solving them, and consider the convergence guarantee for the algorithms. The (-
divergence between two matrices A and B is defined as

Ds(A, B) = ds(Aij, By),
i

2Although it is NP-hard to check the SSC [Huang et al., 2013], it is possible to do it for medium-scale
matrices by solving a non-convex quadratic optimization problem with Gurobi. We thank Robert Luce,
from Gurobi, to help us write down and solve this optimization problem.



where, for scalars x and v,

%—log%—l for 5 =0,
ds(x,y) = xlog% —r+y for 5 =1, 5
s (@7 + (6= 1)y’ = Bay’™")  for B #0,1,

see Basu et al. [1998], Eguchi and Kano [2001]. When 8 = 2, this corresponds to the
least-squares measurement, whereas for § = 1, it corresponds to the Kullback-Leibler
(KL) divergence. With convention that a X log(0) = —oo for a > 0 and 0 x log0 = 0,
the KL-divergence is well-defined.

3.1 The two proposed deep NMF models

As elucidated in Section 2.2, it is more likely for LCLF to be identifiable compared to
DCLE. Hence we employ LCLF as the basis, and introduce the following two novel
deep S-NMF model:

1. Deep -NMF without regularization:

L
min Y \Dy(Wi_y, W, Hy) subjectto Hye=efor{=1,2,. .. L,

{We>0,H,>0} .y =
(6)

where Wy = X, W, has r, columns, ry = n, the \;’s are positive penalty parame-
ters, and e is the vector of all ones of appropriate dimension.

Why the normalization H, ¢ = e? Let us explain why we choose the normaliza-
tion constraints Hy e = e in our deep S-NMF model without regularization. The
LCLF (4) is not fully consistent because of the scaling degree of freedom in NMF,
this was not pointed out by De Handschutter and Gillis [2023]. In fact, except at
the first layer, all errors Dg(W,_1, W,H,) for £ = 2,3, ..., L can be made arbi-
trarily small by using the scaling degree of freedom: multiply ¥/} by an arbitrarily
small positive constant and divide H; by the same constant. This does not change
Dg(X, W1 H,) while W is arbitrarily close to zero making Dg(W;, Wy H,) arbi-
trarily small (for any norm which is not scaled invariant, e.g., all S-divergences
for B > 0). Therefore, for (3) to make sense, it is crucial to add a normalization
constraints on the WW,’s or the H,’s. Many options are possible, and depend on
the application at hand. For example, in hyperspectral imaging, we might impose
H, e = e for all £ which is known as the sum-to-one constraint of the abundances,
and, in topic modeling, where the columns of W, correspond to topics, we might
impose W, e = e as the entries in each column of 1, correspond to probabilities of
the words to belong to the corresponding topic. In this paper, we choose Hy ¢ = e,
that is, the sum of the entries in each row of H, equals one, as by Fu et al. [2018].
The main reason is that this normalization can be made w.l.o.g. by the scaling de-
gree of freedom. Moreover, we do not constraint 1V, as it would make the design of
closed-form MU for W, much more difficult, if possible (see Section 3.2 for such
a case).



2. Minimum-volume (min-vol) deep S-NMF:

L
' AeDg(Wi_1, WeHp) +aglog det (W, Wi +01) st. W/e=ce,
{Wézoffl}}énzo}%l; ¢Dg(Wi—1, WeHy)+aylog det (W,' Wy 4 61) Je=¢
(7

where W, = X, W, has r, columns with ry = n, ¢ is small positive scalar that
prevents the log det to go to —oo, and the a’s are positive penalty parameters. The
choice to normalize the columns of W), rather than the rows of H,, is from the fact
that it significantly improves the conditioning of the min-vol NMF problem. When
rows of H, are normalized, it can lead to highly ill-conditioned of W/, especially
when certain columns of W/, exhibit substantially larger norms compared to others.
This issue is further elaborated by Leplat et al. [2020] and [Gillis, 2020, Chapter
4.3,3.5].

3.2 Algorithms for solving the proposed deep 5-NMF models

Obtaining a global solution for deep NMF is a computationally challenging problem,

as it generalizes NMF which is NP-hard [Vavasis, 2010]. Moreover, the objective func-

tions presented in (6) and (7) are jointly non-convex for (W1y,... Wy, Hy,... Hyp).

Consequently, updating all factors simultaneously can be prohibitively expensive. There-
fore, most algorithms designed to address (deep) NMF rely on block coordinate meth-

ods. These methods update one factor at a time while keeping the others fixed. In

this paper, we also adopt this strategy to efficiently address the optimization challenges

associated with deep NMF. Specifically, we will employ the block majorization min-

imization (BMM) framework, which was designed to solve the following multi-block

nonconvex optimization problem:

min F(z):= f(z) + Zgz(xz), (8)

z:=(21,22,...,T5)EX

where f is continuous on &, g;’s are proper and lower-semicontinuous functions (pos-
sibly with extended values), and X = &} X Ay x --- x Xy with X; 1 = 1,2,...5)
being closed convex sets. At iteration £, BMM fixes the latest values of block j # i and
updates block z; by

k : k kook-1 k-1 k-1
) Earg;nelgfl_{ui(xi,xl,...,xifl,m i Ty )—i—gi(xi)}, Q)
1 1

where u; : X; X X — R is a block majorizer of f(x), that is, u; satisfies the following
conditions

flx),Vre X, (10)
L1y ooy Liz1,Yiy Tig1, - - - ,xs),VyZ- - XZ‘,SL’ cX.

7
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From the definition of wu;, we have

F(2®) = uy (o, 2%, .. 2" —i—ZgZ k“,x’f,...,a}f)+gl(x]f+l)+Zgi(:Ek)
i#1
> f(a:’f“,a:’;,...,ws)+g1(:1:'f“)—|—Zgi(3ck
i#1
= up(ay, 2t ah, o al) F (@) + ) gial
1#£1

> up(a§ ™ it ah ) + g (@) ga(as )+ Y gilad)

i{1,2}
> flel ™yt al )+ g (@) + () + ) g

12{1,2}

> F(a™.

In other words, BMM produces a non-increasing sequence { F'(z*)}. We refer the read-
ers to Hien et al. [2023], Mairal [2013], Razaviyayn et al. [2013], Sun et al. [2017] for
examples of majorizer functions. BMM was introduced by Razaviyayn et al. [2013]
(with the name BSUM - block successive upper-bound minimization) to solve noncon-
vex problem (8) with g; = O for¢ = 1,...,s. It is proved in [Razaviyayn et al., 2013,
Theorem 2] that if the following conditions are satisfied then we have a convergence
guarantee for BSUM:

* u;(y;, ) is quasi-convex in y; fori = 1,... s,
* the subproblem (9) with g; = 0 has a unique solution,

o ul(y;, m; d;) }y_:x_ = f'(z;d) Vd = (0,...,d;,...,0) s.t. x; +d; € X; Vi, that
is, the directional derivative of each majorizer with respect to its block of variables
coincides with that of the original objective,

* u;(y;, x) is continuous in (y;, x), for all 7.

It is worth mentioning that TITAN introduced in Hien et al. [2023] and BMMe in-
troduced in Hien et al. [2024] are accelerated versions of BMM for solving Problem (8).
TITAN and BMMe enhance BMM by employing inertial terms/extrapolations in each
block update, which significantly boosts the convergence of BMM. Leveraging the con-
vergence outcomes established for BSUM, TITAN, and BMMe, numerous algorithms
addressing low-rank factorization problems come with guaranteed convergence. For ex-
ample, BSUM assures the convergence of a perturbed Multiplicative Update (MU) and a
block mirror descent method for K. NMF, see Hien and Gillis [2021]; TITAN provides
convergence guarantees for accelerated algorithms dealing with min-vol NMF [Thanh
et al., 2021], sparse NMF and matrix completion [Hien et al., 2023]; BMMe guarantees
convergence of MU with extrapolation for 5-NMF with § € [1, 2].

Although convergence guarantees have been firmly established for BSUM (TITAN
and BMMe) under appropriate assumptions, which serve as valuable tools to ensure the
convergence of BMM in solving deep NMF models, it is not a straightforward task to
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construct suitable majorizers that satisfy the required assumptions. In the next sections,
we propose suitable majorizers and apply BSUM to design efficient algorithms to solve
the two proposed deep -NMF models. To that end, we need the following lemma from
Févotte and Idier [2011] that provides a majorizer for h — > . dg(v;, [Wh];), where
vector v and matrix W are fixed.

Lemma 1 (Majorizer function for [-NMF Févotte and Idier [2011]). Denote Wh by v
and the entries [W h|; by ©;. Let h be such that v; > 0 and h; > 0. Then the following
function

- ijh hy
ah =3 [T ]d@”“ﬁj)} (an
[A/ V;, Uj szg j) + d(vi, B) | + d(v)

is a majorizer of the function h + >, dg(v;, [Wh];), where d is a convex function of u,

d is a concave function of u and d is a constant of u in the following decomposition of
dg

ds(v,u) = d(v,u) + d(v,u) + d(v), (12)

see Table 2.

Table 2: Differentiable convex-concave-constant decomposition of the [-divergence
under the form (12) [Févotte and Idier, 2011].

dv,u) | d(v,u) d(v)
B = (=00, D\{0} | gH5ou” " [ 507 50V
6 =0 vu™t | log(u) | u(log(v) —1)
B ell,2] dg(v, ) 0 0

Note 1. It is important to note that G(h, l~z) is convex in h. Furthermore, since we have
Ds(y,wH) = Dg(y", H w"), where vector y' and matrix H are fixed, Lemma I can
be used to derive a similar majorizer G(w, W) for w — Dg(y,wH). On the other
hand, note that Dg(Y,WH) = . Dg(y;,w;H), where y; and w; are the i-th row
of Y and W respectively. This means W +— Dg(Y, W H) is separable with respect
to the rows of W. Hence, we can formulate a majorizer for W +— Dg(Y, W H) by
summing up the majorizers of its rows w — Dg(y,wH). We have similar procedure
for H — Dg(Y,WH). Considering KL NMF, BSUM using the majorizers in Lemma 1
is the MU algorithm proposed by Lee and Seung [1999, 2001], see Hien and Gillis
[2021].

3.1 Algorithm for solving deep 5-NMF without regularization

Problem (6) has the form of (8), where x comprises W, and H; forl =1,...,L, g; =0,
and the closed convex set X; corresponding to W, is R and that corresponding to
Hyis {H,: H € R}™"' He = e}.

11



Update of H; We observe that H; only appears in one term of the objective func-
tion in (6). While fixing the other factors, minimizing the objective of Problem (6)
with respect to H; is the same as in standard S-NMF. We hence employ the majorizers
in Lemma 1 (see also Note 1) and the recently introduced framework by Leplat et al.
[2021] that allows one to derive MU for block of variables satisfying disjoint equality
constraints as well as nonnegativity constraints. See Algorithm 1 for the actual up-
date. Note that, in the update of H,, the parameter p appearing in the denominator
corresponds to the optimal vector of Lagrange multipliers allowing the new updates to
satisfy both the nonnegativity and the sum-to-one constraints, see Leplat et al. [2021]
for more details about the procedure for such updates.

Updateof W, for [ =1,...,L — 1. While fixing the other factors, the corresponding
subproblems of (6) with respect to each of the block Wy, [ = 1,..., L—1, have the same
structure. Hence we can focus on building the majorizer for one representative 11/,. To
simplify the notation, let us denote W, by W, W,_, by Y, H, by H, and Wy, 1H,., by
W. Then each subproblem is equivalent to the following problem (after removing the
constants in the objective):

find argmin \;Dg(Y, WH) + Ny Dg(W, W), (13)

W>0

where Y, H, W are given and kept ﬁxe_d during the update of W. Let w;, y;, and w;,
1 =1,...,m,bethe rows of W, Y and W respectively. Note that the objective function
of (13) equals to

N Dy, wiH) + N1 Y Da(w;, @),

which is separable with respect to the rows of WW. Therefore, we can focus on building
the majorizer for each row of W (then sum up these majorizers to formulate the ma-
jorizer for WW). Problem (13) restricted to a particular row ¢ of W is equivalent to the
following problem:

find argmin \jDs(y, wH) + A1 Dp(w, w), (14)

w>0

where the subscript 7 has been dropped for notation succinctness. For the first term
in the objective of (14), we use the majorizer G(w, W) proposed by Févotte and Idier
[2011], see Note 1. This implies that \,G(w, W) + Ap11Ds(w,w) is a majorizer of
w — \Dg(y, wH) 4+ Apy1Dg(w, w). Consequently, the update of each row of W is

w € argmin  G(w,w) + ADg(w, w), (15)

w>0

where \ = Aﬁ—:l To compute the positive minimizer of (15), it’s sufficient to look for
w € R that cancels the gradient of objective function from (15). Since the objective
function is separable w.r.t. each entry wy, of w, we focus on solving:

find wy, > 0 such that V,,, [G(w, W) + ADg(w, w)] = 0. (16)

w:ﬁ)kz
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The next steps depend on the value chosen for 5. A closed-form of the mini-
mizer @ can be derived for § € {0,1/2,1,3/2,2}. Note that considering the case
B = 2 is excluded since the objective function is L-smooth in this case, hence effi-
cient first-order methods can be used to tackle the subproblems such as the well-known
Nesterov accelerated projected gradient descent [Nesterov, 2018]. Furthermore, for
g € {0,1/2,1,3/2}, Dg(w,w) is strictly convex in w, which makes the majorizer
MG (w, W)+ Apy1 Dg(w, w) strictly convex in w (this convexity is used to verify the con-
ditions for a convergence guarantee of BSUM). In the following, we detail the updates
for the case § = 1. The updates for 5 € {0,1/2,3/2} can be found in Appendix A.

Considering 5 = 1, from Lemma 1 and Table 2 for § = 1, one can show that solving
(16) boils down to find a nonnegative solution wy, of the following scalar equation:

b

a = — Aog(wy, ), (17)
wr, ( kz)
where a = . Hy,j, — Alog(wg,) and b = 1wy, >, Hk[jé[;%]_(note that y;, is an entry
Je
of a row y). Equation (17) has the following nonnegative solution:
. b
W, = ———F—a~ s (18)
w (i)

where W(.) denotes the Lambert JV-Function. Note that it is typical to use the Lambert
function to describe the solution of (17); see Corless et al. [1996]. Interestingly, this
update is well defined at the boundaries of the feasible set, in particular when b and a
respectively tend to 0 and +oo, the latter occurs when the entry wy, tends to 0. Indeed,
we have lim 1y, (b) = e~%, and lim 1, (a) = 0. Equation (18) can be expressed

b—0,6>0 a—+o0
a<+o0o b#0

in matrix form as follows:
- [B]

W =
AN (19)
v ()]

where A = JH, — log(W) with J is a all-one matrix of size m-by-r,_;, and log is
element wise, and the notation e is the element-wise exponential, and B = W ©

<%H T) with C' ® D (resp. % ) is the Hadamard product (resp. division) between

C and D and C(?) is the element-wise o exponent of C'. It is important to note that the
MU update in (19) would encounter a zero locking phenomenon, that is, it is unable to
make changes to an entry within W when that entry equals O (since when w;, = 0 we
would have b = 0). This issue can be resolved by selecting an initial ¥ that contains
strictly positive entries.

Update of 1/, We observe that 1/, only appears in the last term of the objective
in (6). Minimizing the objective of Problem (6) with respect to W is the same as
in standard S-NMF. As noted in Note 1, BSUM step collapses to the classical MU of
B-NMF.

Algorithm 1 summarizes our proposed algorithm for deep 5-NMF in the case § = 1,
that is, for deep KL-NMF, recalling that W, = X and W, has r, columns with ry = n.
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Algorithm 1 Algorithm for Deep KL-NMF

Input: Input matrix X, number of layers L, inner ranks r;’s, weight parameters \;’s.
Output: An approximate solution to Problem 6

1: fork=1,...do
2: fori € {1,...,L} do
3: % Update of factors H; as done by Leplat et al. [2021]
|:WT,IC—1< [Wf—1 )}
£ k—1,k—1
4: Hf « Hé“_lé) T [ Z‘Z ] , where 1 is the root of a univariate
¢ Emxry_1 THElxry 4
polynomial.
5: 9% Update of factors W,
: if | < L then
7: N ¢ A
: N
_ W
8: B+ ng ! ®© (_[V[[/Zk_el_ljﬂ HET’k)
9: A JH]Y —log(WETHESD
10: Wk —A2
()
11: else if [ = L then
WE_y) Tk
12: Wk« Wk1o by ) which are the standard MU for
: L L [6mxT-L H[T:k] )
KL-NMF.
13: end if
14: end for
15: end for

16: return {WL, HL7 HL—la ey Hl}

Convergence guarantee Although Algorithm 1 produces a non-increasing sequence
{f*}, where f* is the objective of (6) at iteration k (since its update follows BSUM), it
is not guaranteed that the generated sequence of Algorithm 1 converges (the objective in
(6) 1s not directionally differentiable). To have some convergence for Algorithm 1, we
need to impose the constraints W, > € and H;, > ¢, where ¢ > 0, to (6). In our imple-
mentation, we choose the MATLAB machine epsilon for . Using the same majorizers,
we obtain a perturbed version of Algorithm 1, in which we take the element-wise max-
imum between the updates of factors {W,, Hy}[_, (corresponding to the closed-form
expression of the minimizer of BMM step built at the current iterate) and €. With this
additional constraints, the sufficient conditions for convergence of BSUM would be
satisfied, leading to the convergence of the perturbed version of Algorithm 1.

Note that a similar rationale can be applied to have a convergence guarantee for
a perturbed version of the algorithm solving the proposed deep S-NMF with § €
{0,1/2,3/2}. In that case, we also have closed-form solution for (16) and strict con-
vexity for the majorizer used in (15). For the sake of completeness, we provide in
Appendix A the updates for {W;}L_, factors when 3 € {0,1/2,3/2}.
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Parallelization The proposed algorithm relies on MU-based approaches, which in-
volve computationally intensive steps in matrix products. Furthermore, the updates to
all factor entries can be carried out independently. Therefore, the proposed algorithm
can be effectively executed on a parallel and high performance computing platform.

Remark 1 (Usefulness of our MU in other contexts). The MU (19) allows us to update
W to minimize (13). The regularized NMF problem (13), in which W is a given matrix
to which W should be close to, could be useful in other contexts than deep [3-NMF,
e.g., if some W is available via prior some knowledge, by taking W = 0 to regularize
W, or for symmetric NMF where W = H' [Li et al., 2023]. A very similar regu-
larization has appeared in temporal NMF, see Févotte et al. [2018], where columns
of H correspond to different times and hence are highly correlated, therefore using
Z;:ll Dg(H(:,j),H(:,j + 1)) as a regularization allows one to account for temporal
dependencies. Another occurrence of such models is co-factorizations, where two or
more matrices are factorized with shared factors; see Seichepine et al. [2014], Gouvert

etal [2018].

3.2 Algorithm for solving minimum-volume deep KL-NMF

Problem (7) has the form of (8) in which x comprises W; and H; forl =1,...,L, g, =
0, the closed convex set A that corresponds to W is {W, : W, € RTX”‘l, W,le=e}
and that corresponds to Hy is R’/ *"=1_1In the following, let us focus on the special case
£ = 1. Similar rationale can be followed for other values of .

Update of H, Each factor H, with 1 < ¢ < L only appears in a single term within
the objective function of Problem (7). As a result, one can directly apply the classical
MU updates for H,.

Update of Wy, ¢/ = 1,...,L — 1 Since all the subproblems in W, with 1 < ¢ < L
have the same structure, we detail in the following the methodology for deriving the

BSUM update for one specific W,. For notation succinctness, we drop the subscript £
and denote W, by W, W,_y by Y, H, by H, and W, H,;; by W. The subproblem in
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W is as follows:
find argmin  ADicp (Y, WH) + Appa Dicr. (W, W) + aglogdet (W'W +61)
such that W 'e = e, W > 0.

For a given matrix W, denote A = (WTW + 6I)~!, AT = max(4,0) > 0, A~ =

max(—A,0) > 0, and ®(&;) = Diag (2M> (which is a diogonal matrix),

(@]
where ; is a row of W, and H denotes the component-wise division. Let [(w) =

w' Aw and Aw; = w; — ;, where w; is a row of 1. From [Leplat et al., 2020, Lemma
3], we have

log det (WTW +61) < logdet (WW +61) + (A,WTW — WTW)
< g(W, W) = log det (WTVV + 5]) (A, wTw )+ Zl () + (Aw;, VI(w;))

(Aw;, ©(w0;) Aw;).

[\3|,_.

(20)
We then use the following majorizer for W':

GW, W) = MG(W, W) + Aes1 Dicr. (W, W) + ey g(W, W),

where G/(W, W) is the majorizer of W — Dy (Y, W H), which is formed by summing
the majorizers proposed in Lemma 1 for each row of IV as discussed in Note 1. As
G(W, W) and Dy (W, W) are convex in W and g(W, W) is strongly convex in W
over R} , we also have G(W, W) is strongly convex in W. Hence, the following
subproblem for the update of W has the unique solution:

find arg mwi/n MG(W, W) + Xes1 D (W, W) + apg(W, W)
(21)
suchthat W'e =e, W >0,

where TV is the current iterate. Below we will describe an ADMM to solve Problem
(21).
Update of 1/, We observe that IV, only appears in the last term of the objective. We
use the following majorizer for W,

Gr(Wr, W) = AGr(Wr, Wp) + arg(Wy, Wy),

where G (W, WL) is the majorizer of Wy, +— Dy (W1, W Hy), which is derived
as in Note 1, and g is defined in (20). Then the update of W, is the MU proposed
by Leplat et al. [2021].

ADMM for solving Problem (21) to update 1/, We rewrite Problem (21) as follows:
find arg rvrl}lg GW, W) + ADgr(Z, W) + ag(W,W) + Zx,, (W)

(22)
st. W—-2=0,
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where Zy,, (W) denotes the indicator function associated to the convex set Xy =:
{(WeR™m=1|Wle=¢e, W >0},a = i—ﬁ, and \ = Ai—j . The augmented Lagrangian
function associated to Problem (22) is

L,(W,Z,U) :==G(W, W) + ADg1(Z, W) + ag(W, W) + Ta,, (W) + guw — Z+ U3,
(23)

where U denotes the scaled dual variables associated to constraints W — Z = 0, written

in the so-called scaled form. Here-under, we detail the iterative procedure to compute

the solution (W, Z) for Problem (22). As for classical ADMM methods, each iteration

of our procedure performs three steps. Given the current iterates (W, Z¢ U*), the three

steps are:

1. W-minimization:

Wi = argmin{G(W, W) + ag(W, W) + §|\W iy U"H%}, 24)

WeXy
where TV is the current iterate of the main algorithm.
2. Z-minimization:
ZHh = arg;nin{ADKL(Z, W)+ gHVV“rl + U~ Z|%}. (25)
3. Dual Updates:
Ut .= U Wit it (26)

It remains to present how we tackle Problems (24) and (25).

W-minimization The update of W is computed based on the methodology recently
introduced by Leplat et al. [2021]. We obtain the following updates in matrix form:

[[[C +ep']? + 5] E (C+eu')

W(p) =W o 7 ,

27)

C = emp 1 HT —4a(WA™) = p(Z' = U, T = 4aW (AT + A7) + 2pepmrys S =
(8aW(A+ + A7)+ 4pemyr,) © (%HT> ,and e, ,,—1 and e, ., are respectively m-
by-r, — 1 and m-by-r, matrices of all ones, and ;. € R" denotes the vector of Lagrange
multipliers associated to equality constraints on the columns of W, see Leplat et al.
[2021] for further details. One can easily observe that updates defined in Equation (27)
satisfy the nonnegativity constraints, given W > 0. Moreover, as per [Leplat et al.,
2021, Proposition 2], the constraints W (1) Te = e are satisfied for a unique ;* € R™.
The computation of * is achieved by using a Newton-Raphson procedure for solving
W(u)Te = e. The update Wit! for Problem (24) is finally performed using Equation
(27) with p = p*.

where A = (WTW + 6I)7', At = max(4,0) > 0, A~ = max(—A4,0) > 0,
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Z-minimization For this step, observe that the objective function to minimize is sep-
arable w.r.t. each entry of factor Z, hence each entry can be optimized independently.
The updates are obtained by computing Z which satisfy the first-order optimality con-
ditions, a.k.a. the KKT conditions. For 8 = 1, and denoting by z the (o, p)-th entry of
Z of interest, we are looking for Z such that

VoAADin (2, W) + Sl = Vi Bz = 0.

where V¢ = W 4 U?, Tt boils to solve the following scalar equation in z:

log(2) + b+ vz =0, (28)
where b = —log(W,;,) — vV, and v = £. Equation (28) can be solved in closed-form:
—b
z = M) (29)
v

where WW(.) denotes the Lambert VW-function. Equation (29) can be easily expressed in
matrix form; the update Z**! for Problem (25) finally writes:
Zi+l _ W(e "v)] (30)
v
where B = — log(W) — vV? and the log(.) is applied element-wise to the matrix W.
Finally, the three steps of the ADMMe-like procedure detailed above for solving
Problem (21) are repeated either for a maximum number iteration ¢,,,, or until the
stopping criterion ||’ — Z'||r < € is reached, with ¢ a threshold defined a priori.
Algorithm 2 summarizes our proposed algorithm for minimum-volume deep /-
NMF in the case § = 1, that is, for minimum-volume deep KL-NMF (recall that
Wy = X and W, has r, columns with ry = n).

4 Numerical Experiments

In this section, we report the use of deep 5-NMF for three applications: facial fea-
ture extraction, topic modeling, and hyperspectral unmixing. The codes are written in
MATLAB R2021a and available from

https://github.com/vleplat/deep—-beta-NMF-public

and can be used to reproduce all experiments described below.

It is important to acknowledge the challenge of quantitatively assessing the perfor-
mance of our novel deep 3-NMF models. First, we are the first to introduce deep NMF
models based on the 5-divergences with 3 € {0, 1, %} Second, the absence of ground-
truth real-world data for deep NMF models further complicates performance evaluation,
as pointed out in the survey paper by De Handschutter et al. [2021]. For these reasons,
we will only use 3 and 4 layers, while providing quantitative comparisons between deep
NMF and multilayer NMF only in terms of objective function values. Recall that mul-

tilayer NMF decomposes X sequentially: X = W1 H,, W, = WyH,, Wy = W3Hs,
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Algorithm 2 Algorithm for Minimum-Volume Deep KL-NMF

Input: Input data matrix X, number of layers L, inner ranks r;, weight parameters ),
and ay, a scalar 9 > 0, a maximum of iterations %,,,., a threshold ¢, and parameter
p > 0 for ADMM procedure.

Output: An approximate solution to Problem 7

1: fork=1,...do
22 forlie{l,..,L}do
3: % Update of factors H,

- (W]
WT’k 1< 7€ 17 >:|
Hr 1o L wy— ey
0 ¢

4: T h—1
Wy " emxr,_y]
5: % Update of factors W,
6: if | < L then
7: 9% ADMM-procedure
8: W W A (WTW +61)71, Atemax(A,0), A~<max(—A,0),
9: T «+ 43‘—?1/7/(14* + A7)+ 2pem
~ k
10: S (SEW(A* + A7)+ dpeny,) © (S (HE)T)
11: 141
12: WO« W= 20 « WO, U° <0
13: V4 AZ -
14: while i <i,,,, & |[W' — Z°||r < e do
15: % W-minimization
16: Vie Zt-U"
17: C < emr1(H))T — 4%(WA‘) —pV'?
18: 11 € root(W () Te = e) over R™
, B [[C—i—e,uT]‘Q-&-S] 2 —(Cﬂﬂ)]
19: Wi+ W o ]
20: % Z-minimization
21: Vi Wit 4 U, B+ —log(W/ ' Hy ) —vV?
29- Zitl L W(ePy)]
23: 9 Dual Updclzjtes
24: U« U-t+wi—2
25: 14— 1+1
26: end while
27: Wzk — Wi
28: else if | = L then
29: Update from Leplat et al. [2021].
30: end if
31:  end for
32: end for

33: return {W,, Hy, H 4,..., H}
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etc. Hence standard MU for NMF [Févotte and Idier, 2011] can directly be used to
compute multilayer NMFs with S-divergences. Note that the error at the first layer of
multilayer NMF is expected to be smaller than that of deep NMF since it does not take
into account the subsequent layers. However, we will see that deep NMF will have sig-
nificantly smaller errors at the next layers, because of the global optimization approach.

A promising avenue for future research lies in the development of datasets specifi-
cally designed for deep NMF models. These datasets would facilitate more robust and
empirical evaluations, addressing this critical need in the field.

4.1 Facial feature extraction with 5-NMF, 5 = 3/2

Let us apply deep 5-NMF with g = g on the CBCL face data set used in the seminal
paper of Lee and Seung who introduced NMF to the machine learning community [Lee
and Seung, 1999]. It contains 2429 faces, each with 19 x 19 pixels. Note that 5-NMF
with 3 = 3/2 has been shown to perform well for imaging tasks; see Févotte and Do-
bigeon [2014]. It also allows us to show that the updates developed in Appendix A for
the case § = % perform well. We chose the penalty parameters )\, as done by De Hand-
schutter and Gillis [2023], that is, the )\, are chosen such that each term in the objective
is equal to one another at initialization, that is, all values A\, D3 /Q(Wg, WK(O)H éo)) are
equal to one, where (Wl(o), W . H éo)) is the initialization. This is the default in

our implementation, with \, = oo~ The data matrix, X € R?29x361
Dg)o(W, 2, W, Hy™)

contains vectorized images on its rows. As it is now well established, NMF, with
X ~ WH, is able to extract facial features as the rows of H, such as eyes, noses
and lips; see Figure 3.

Let us now apply multilayer and 5-NMF with § = % on this data set with four layers,
and r = [80, 40, 20, 10]. For each layer of multilayer 5-NMF, we run 1000 iterations of
the standard MU. We initialize deep S-NMF with 500 iterations of multilayer 5-NMF,
and then run it for 500 iterations using our proposed Algorithm 1; see Appendix A for
the updates. This means that deep 5-NMF is initialized with the solution of multilayer
B-NMF obtained after only 500 iterations. We repeat this experiment 35 times, and
Figure 2 reports the median of the evolution of the error of the four layers of deep
[-NMF, that is, Ds/5(W,_1, W, H,), divided by the final error obtained by multilayer
B-NMF after 1000 iterations (so that both algorithms have run for the same number of
iterations). As expected, these ratios are initially larger than 1, since deep 5-NMF is
initialized with multilayer S-NMF after only 500 iterations.

The main observation from Figure 2 is the following: Because deep S-NMF needs
to balance the error between each layer, the error at the first layer remains larger than
that of multilayer 5-NMF, which is expected. However, the errors at the next three
layers becomes quickly significantly smaller; see also the first column of Table 3. At
convergence, the error at the second (resp. third and fourth) layer is on average about
3.5 (resp. 13 and 47) times smaller than that of multilayer 5-NMF.

Table 3 also reports the average sparsity of the facial features at each layer, using
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Figure 2: Evolution of the median errors at the different levels of deep S-NMF with
B = % (initialized with multilayer 3-NMF after 500 iterations) divided by the error of
multilayer 5-NMF after 1000 iterations.

error deep/ML (in %) | sparsity ML (in %) | sparsity deep (in %)
Layer 1 106.7 + 0.9 573 +0.5 69.6 + 0.5
Layer 2 29.2+0.9 33.94+0.7 53.6 £ 0.8
Layer 3 7.7+04 18.8 +0.8 374+ 1.2
Layer 4 2.1+£03 10.2 +0.8 17.6 + 1.1

Table 3: Deep vs. Multilayer (ML) S-NMF with g = % average and standard deviation
for the error of deep S-NMF divided by that of ML S-NMF (first column), and average
and standard deviation for the sparsity of the facial features of ML S-NMF (second
column) and deep S-NMF (third column).

the widely used Hoyer sparsity [Hoyer, 2004] given by

|zl
v =1,
Ji—1

for an n-dimensional vector x. This measure is equal to one if = has a single non-zero
entry, and is equal to zero if all entries of x are equal to one another.

First, observe that for both deep and multilayer 5-NMF, the sparsity decreases as
the factorization unfolds: this is unavoidable since facial features at deeper levels are
nonnegative linear combinations of facial features at shallower levels. For example,
the facial features at the second layer are given by H,H;, that is, nonnegative linear
combinations of the facial features at the first level, H;; see also the discussion in Sec-
tion 2.2. Second, we observe that deep 5-NMF produces significantly sparser facial
features (namely +12.3% at layer 1, +19.7% at layer 2, +18.6% at layer 3, +7.4% at
layer 4). This makes sense because deep S-NMF balances the error at the four layers,
and sparser features at the first layer gives more degree of freedom to generate features

sparsity (z) = e [0,1],
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at the next layers. In fact, a dense feature at the first layer can only generate denser ones
at the next layers. This is an interesting side result of deep S-NMF: it can be used to

solve sparse NMF, without parameter tuning.
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Figure 3: Example of facial features extracted by multilayer S-NMF vs. deep 5-NMF
for f ==

Figure 3 displays the facial features of multilayer and deep NMF at the different
layers (for the last run of our experiment, since it does not make sense to average facial
features). We observe that most of the facial features of the first layer of deep and
multilayer S-NMF are similar, the main difference is that those of deep 3-NMF are
sparser. However, after the first layer (that is, at layers 2, 3 and 4), where the error
of deep 5-NMF is significantly smaller, some facial features are completely different
(e.g., the second one), showing that deep S-NMF produces different outcomes than

multilayer 5-NMF.
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4.2 Topic modeling

Topic modeling aims to discover the underlying topics or themes in a collection of
documents. It is a form of unsupervised learning that can help organize, summarize,
and understand large textual datasets. In topic models, one typically assumes that a
document is generated by a mixture of topics, each of which is a distribution over words
in the vocabulary; see, e.g., Churchill and Singh [2022] and the references therein.
Topic modeling models aim to represent each document through the learned topics and
understand the topics in the corpus through the most probable words of each topic.

NMF has been successfully used in this context, initiated by the paper of Lee and
Seung [1999]. If X is a word-by-document matrix, its NMF, X ~ W H, extract topics
in W which is a word-by-topic matrix, while /7 allows one to classify the documents
across the topics. In this context, deep NMF allows one to extract layers of topics:
from lower level topics to higher level ones (e.g., tennis and football belong to sports).
We will see an example below; see also Will et al. [2023] for a different but similar
deep NMF model used for topic modeling. It has been well established that the KL.
divergence is more appropriate for the analysis of document data set. The reason is that
such data sets are sparse (most documents only use a few words in the dictionary). In
fact, the KL divergence amounts for a Poisson counting process; see, e.g., [Gillis, 2020,
Chapter 5] and the references therein.

In this section, we apply deep KL-NMF to the TDT2-top30 dataset and compare its
performance with multilayer NMF. The TDT2 corpus (Nist Topic Detection and Track-
ing corpus) consists of data collected during the first half of 1998 and taken from 6
sources, including 2 newswires (APW, NYT), 2 radio programs (VOA, PRI) and 2 tele-
vision programs (CNN, ABC). Only the largest 30 categories are kept, thus leaving us
with 9394 documents in total [Cai et al., 2008]. We ran the experiment with three layers
with r = [20, 10, 5]. Moreover, since deep NMF is computationally more intensive, we
preprocess the data set to keep only the most important words. To do that, we perform
a rank-20 NMF of X, and keep the 30 most important words in each topic (that is,
each column of WW); we used the code from https://gitlab.com/ngillis/
nmfbook/.

We use a similar setting as for the CBCL dataset, except that we only run the algo-
rithms once (we will focus on the analysis of the topics obtained) and use A = [4, 2, 1],
that is, we give more importance to the first layers. Otherwise, we observe the first layer
topics were getting too similar: for example, giving too much importance to the term
||W1 — Wy Hsl|2 will make W become rank deficient (since ro < 71), and hence its
columns will become more colinear.

Figure 4 reports the evolution of the error of deep KL-NMF divided by the final
error obtained by multilayer KL-NMEF, exactly as for the CBCL data set. As for CBCL,
the errors of deep KL-NMF at the first level is slightly larger (namely 107.5%), while
the error at the second and third levels are significantly smaller (namely 30% and 22%,
respectively) than that of multilayer NMF.

Let us try to analyse the topics extracted by deep KL-NMF, and the relationships
between them. For each column of 1W,, which contain the topics, we sort the words
in order of importance, and report them in that order. Table 4 provides the 10 most
important words for the second layer, and Table 5 provides the 5 most important words
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Figure 4: Evolution of the error at the different levels of deep KL-NMF divided by the
error of multilayer KL-NMF.

for the third layer. For simplicity, we do not report the topics at layer 1 (there are 20),
but a similar analysis can be made, and they are available from our code online.

What is interesting with deep NMF models, is that we can link the topics together,
as in a hierarchical decomposition. For example, the topics of layers 2 and 3, within the
columns of W, and W5 respectively, are linked via the relation

r3
W2(:7j) ~ Z W3(:7 k)Hg(k,j) for j = 17 27 cees T2,
k=1

where Hj(k, j) tells us the importance of the kth topic at level 3 to reconstruct the
jth topic at level 2. The last line of Table 5 provides this information. Because most
topics extracted at the second layer are rather different and use different words, Hj is
rather sparse (this in turn is because X is sparse, and hence the W, and H,’s are as
well). For example, the topic 1 of the third layer (about politics) merges the topics 3
and 4 from the second layer (about American politics and nuclear conflicts), and the
the topic 3 of the third layer (about economics) merges the topics 5 and 7 from the
second layer (about the stock market and the Asian economic crisis). Except for the
fifth topic of the third layer, which is a mixture of heterogeneous ones (mostly Olympic
games, but mixed with the tobacco bills and the media topics), the other ones are rather
meaningful. Interestingly, the topic at level 2 about the media (with words such as
reporter, correspondent, headline, etc.) is merged into three topics where the media is
present (military conflicts, political scandals, Olympic games).

4.3 Hyperspectral imaging

In this section, we consider hyperspectral images to evaluate the effectiveness of the
proposed min-vol deep KL-NMF solved via Algorithms 2, in comparison to the multi-
layer KL.-NMF [Cichocki and Zdunek, 2006, 2007], and the Frobenius-norm based deep
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
Politics Military conflicts| Economy | Clinton-Lewinsky | Mixed topics
president iraq percent spkr tobacco
clinton united economic lewinsky olympic
government states crisis president team
nuclear weapons economy clinton city
india iraqi asian white games
house military financial house going
political saddam billion starr olympics
china security market lawyers won
pakistan inspectors bank news nagano
party president asia case gold
Merged topics | Merged topics | Merged topics | Merged topics | Merged topics
3&4 1,6, & 10 5&7 6 &9 2,6&8
from layer 2 from layer 2 from layer 2 from layer 2 from layer 2

Table 5: Most important words in each topic of third layer of deep KL-NMF.

MF framework with min-vol penalty and layer-centric loss function recently proposed
by De Handschutter and Gillis [2023]. To ease the notation, the latter will be dubbed as
“LC-DMF”. All the algorithms are implemented and tested on a laptop computer with
Intel Core 17-11800H@2.30GHz CPU, and 16GB memory.

4.1 Data sets

A hyperspectral image (HSI) is an image that contains information over a wide spectrum
of light instead of just assigning primary colors (red, green, and blue) to each pixel as in
RGB images. The spectral range of typical airborne sensors is 380-12700 nm and 400-
1400 nm for satellite sensors. For instance, the AVIRIS airborne hyperspectral imaging
sensor records spectral data over 224 continuous channels. The advantage of HSI is that
they provide more information on what is imaged, some of it blind to the human eye as
many wavelengths belong to the invisible light spectrum. This additional information
allows one to identify and characterize the constitutive materials present in a scenery.
We consider the following real HSI:

* AVIRIS Moffett Field: this data set has been acquired with over Moffett Field
(CA, USA) in 1997 by the JPL spectro-imager AVIRIS 3 and consists of 512x614
pixels and 224 spectral reflectance bands in the wavelength range 400nm to 2500nm.
Due to the water vapor and atmospheric effects, we remove the noisy spectral
bands. After this process, there remains 159 bands. As dobe by Dobigeon et al.
[2009], we extract a 50 x50 sub-image from this data set, see Figure 5. It is widely
acknowledged within the hyperspectral remote sensing community that this subim-
age consists of three distinct materials: vegetation, soil, and water. It is worth not-
ing that the norm of the spectral signature for water is significantly smaller com-

3https://aviris.jpl.nasa.gov/data/image_cube.html
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Figure 5: Moffett in synthetic colors

Figure 6: HSI dataset: Moffett Field acquired by AVIRIS in 1997 and the region of
interest (right) represented in synthetic colors, figure reproduced from Dobigeon et al.
[2009].

pared to the other two materials. For more detailed information on this dataset,
please refer to Dobigeon et al. [2009].

* Tumor: 519 spectral bands with 13 x 11 pixels, corresponding to a simulated Mag-
netic resonance spectroscopic imaging (MRSI) of a glioma patient brain [Li et al.,
2012]. This MRSI grid contains spectra from normal tissue, as well as tumor tissue
and necrosis, see Li et al. [2012] for more details about this data set.

4.2 Results

In this section, we present the results obtained from the benchmarked methods for
each hyperspectral imaging (HSI) dataset, as described in Section 4.1. Specifically,
we showcase the abundance maps obtained for each layer of the deep models, aiming
to provide a qualitative assessment of the unmixing and clustering outcomes. For all
the models under consideration, we enforce a two-layer decomposition. Our objective
is to achieve an accurate estimation and localization of the constitutive materials, also
known as endmembers, in the first layer. The subsequent layer is expected to provide a
clustering effect by merging the endmembers into more general clusters, such as vege-
tation vs. non-vegetation as illustrated in Figure 1, or mineral vs. organic or healthy vs
non-healthy human tissues.

To ensure completeness and reproducibility of the results, we will now provide ad-
ditional details regarding the parameters that were considered for each analysis.

¢ AVIRIS Moffett Field: for the AVIRIS Moffett Field dataset, we consider fac-
torization ranks of r; = 4 and r, = 2, with a maximum number of iterations set
to 300. In the deep MF framework with a min-vol penalty [De Handschutter and
Gillis, 2023], we impose a sum-to-one constraint on the columns of factors W.
The values for penalty weights of min-vol regularizations have been tuned and set
to [2; 1] to obtain the best results. For our proposed Algorithms 2, we set p to
100, the threshold ¢ to 10~¢ for the ADMM procedure and the penalty weights of
minimum-volume regularizations to [4; 1].
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e Tumeor: for this data set, we consider factorization ranks of r{ = 3 and ry = 2,
with a maximum number of iterations set to 200. As done for previous data set,
we impose a sum-to-one constraint on the columns of factors W; for LC-DMF
[De Handschutter and Gillis, 2023] with default values for min-vol penalty weights.
In the case of Algorithms 2, the parameters for the ADMM procedure are the same
as the ones considered above, whereas the penalty weights of minimum-volume
regularizations are set to (1107, 1072 .

Discussion on AVIRIS Moffett Field Figure 7 presents the abundance maps obtained
for each layer of the three models. The two deep NMF models accurately detect the
presence of water in the first layer, as well as a discernible “material” observed at the
interface between the water and the soil. Multi-layer KL-NMF does not detect any of
the two. This interface showcases non-linear effects that arise from the phenomenon
of double scattering of light. Both min-vol deep models effectively highlight these ef-
fects, with our proposed method demonstrating slightly superior accuracy in capturing
such intricate features. It is worth noting that the estimation of water in this dataset
is highly challenging, and the most successful results have been achieved by impos-
ing sum-to-one constraints on the H factor of NMF models, as discussed in detail by
Gillis [2020]. Notably, the deep KL-NMF model provides the most accurate estima-
tion of water. Moving on to Figures 8, we observe the abundance maps obtained for
the final layer of the three models. Once again, both min-vol deep KL-NMF models
yield more meaningful outcomes. While LC-DMF [De Handschutter and Gillis, 2023]
distinguishes between vegetation and soil through clustering, min-vol deep KL-NMF
(Alg. 2) gathers soil and vegetation, contrasting them with water.

Discussion on Tumor data set Figure 9 illustrates the abundance maps obtained for
each layer of the three models. As reported by Li et al. [2012], the dataset comprises
three endmembers: the “necrosis” forming a ball in the lower corner of the MRSI grid,
the aureole-shaped tumor surrounding the necrosis, and the healthy tissue. Overall, all
three models produce satisfactory results. In this analysis, it is evident that the min-
vol deep NMF models more accurately extract this information, with a slightly cleaner
localization achieved by min-vol deep KL-NMF (Alg. 2). Examining the second layers
extracted by the models depicted in Figures 10, we observe that all three models exhibit
a similar clustering of the endmembers extracted in the first layer, distinguishing non-
healthy tissue (tumor + necrosis) from healthy tissue. Once again, min-vol deep KL-
NMF showcases a slightly better separation in this regard.

Conclusion on hyperspectral imaging Our proposed min-vol deep KL-NMF (Alg. 2)
shows promising results in hyperspectral imaging compared to two other methods. De-
spite its unconventional use of KL divergence instead of the Frobenius norm, deep
KL-NMF exhibits superior performance in capturing intricate features, particularly in
detecting water and the water-soil interface. It outperforms other methods in accurately
estimating water, a challenging task in the AVIRIS Moffett Field dataset. Addition-
ally, deep KL-NMF achieves satisfactory results in the Tumor dataset with improved
localization and separation.
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(a) deep KL-NMF (b) LC-DMF (c) Multi-layer KL-NMF

Figure 7: AVIRIS Moffett Field data set: From left to right abundance maps extracted
from the first layer of min-vol deep KL-NMF (Alg. 2), LC-DMF [De Handschutter and
Gillis, 2023] and multi-layer KL-NMF [Cichocki and Zdunek, 2006, 2007].

(a) deep KL-NMF (b) LC-DMF (c) Multi-layer KL-NMF

Figure 8: AVIRIS Moffett Field data set: From left to right abundance maps extracted
from the second layer of min-vol deep KL-NMF (Alg. 2), LC-DMF [De Handschutter
and Gillis, 2023] and multi-layer KL-NMF [Cichocki and Zdunek, 2006, 2007].

T A

(a) deep KL-NMF (b) LC-DMF (c) Multi-layer KL-NMF

Figure 9: Tumor data set: From left to right abundance maps extracted from the first
layer of min-vol deep KL-NMF (Alg. 2), LC-DMF [De Handschutter and Gillis, 2023]
and multi-layer KL-NMF [Cichocki and Zdunek, 2006, 2007].
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(a) deep KL-NMF (b) LC-DMF (c) Multi-layer KL-NMF

Figure 10: Tumor data set: From left to right abundance maps extracted from the second
layer of min-vol deep KL-NMF (Alg. 2), LC-DMF [De Handschutter and Gillis, 2023]
and multi-layer KL-NMF [Cichocki and Zdunek, 2006, 2007].

5 Conclusion

In this paper, we have introduced deep NMF models based on 3-divergences using the
layer-centric loss function. We devised efficient multiplicative update algorithms to es-
timate the parameters of these models. Our experimental results illustrated the practical
efficacy of these approaches in diverse applications, namely facial feature extraction,
topic modeling, and hyperspectral image unmixing.

Future research directions include:

* exploring extrapolation strategies of BMMe introduced in Hien et al. [2024] to ac-
celerate the convergence of the proposed algorithms (specifically, an extrapolation
step such as Wy* = WF™t + AF[WF™ — W}~%],, where 4} are extrapolation
coefficients and [-]; denotes the projection onto the nonnegative orthant, can be
incorporated in the update of W, ", and similarly to H}~");

* constructing a library of datasets and experiments specifically designed for deep
NMF models. This would facilitate more robust and empirical evaluations, ad-
dressing this critical need in the field.

* applying deep NMF in other domains such as source separation and gene expres-
sion analysis.
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A MU for deep 5-NMF for g = {0,1/2,3/2}

In this section, we derive MU for W in deep 5-NMF (without regularization) for § =
{0,1/2,3/2}, as done for the KL divergence (5 = 1) in Section 3.1.
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A.1 MU for W when § = 3/2

In order to derive MU to solving (15), similarly to the case § = 1, it is sufficient to
solve (16). From Lemma 1 and Table 2 for § = 3/2, one can show that solving (16)
reduces to finding wy, > 0 of the following scalar equation:

a(wy,)'* = b(wy,)™* — ¢ =0, (31)
where a = (wy,)""/? 3, Hi,; ([0 H];,)" > 420,b = (wr,)'? Y2, Hyys, ([0 H],) " y;,,
c = 2\(wy,)"/? (note that we assume @, > 0 in Lemma 1). Equation (31) has the

2
positive solution wy, = <c+— Vgi““”) . In matrix form, we obtain the following multi-
plicative update

[c + m}
[4] ’

W =1/4

- N 1/2 -
where A — W--1/2 & <[WH} HT) o)\ B = W2 g ([WZ]]MHT), and
C = 2\W/2, Similarly to the case 3 = 1, the MU for 3 = 3/2 would also encounter
the zero locking phenomenon (as when wy,, = 0, we would have b = 0). This issue can

be fixed by choosing an initial W with strictly positive entries.

A.2 MU for WV when 3 = 0

From Lemma 1 and Table 2 for 8 = 0, one can show that solving (16) reduces to finding
wy, > 0 of the following scalar equation:

a(wy,) ™ + Awy,) ™ —e =0, (32)

- ; Hy,j .
where a = (wg,)* Y, erjz([ﬁ{#, c =2 [wgffz +an Equation (32) has the
following nonnegative solution: wy, = — )\+\/2/‘\12+ — = Aty ;z+4“c. In matrix form, we

obtain the following multiplicative update

A+ VAEH4AGC

W:1/2[ 7 ,

where A = W20© <[W’;{]42HT) and C' = VI;—; 2. We see that MU for the case 5 = 0
also encounters the zero locking phenomenon (when w;,, = 0, we would have a = 0),

which can be fixed by choosing an initial " with strictly positive entries.

A3 MU for IV when 3 = 3

From Lemma 1 and Table 2 for g = %, one can show that solving (16) reduces to finding
wy, > 0 of the following scalar equation:

|

—&(wy,)? + b(wy,) +a =0, (33)
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here @ = (W )3 S, Hyo— Yt o= S _Hr 2) b =2\ As-
where @ = ()2 Y, ket gy T c =7, G + Pt and b A As

suming wy, nonnegative and posing r = (wké)%, Equation (33) can be equivalently
rewritten as follows:

2} +pr*+qr+r =0, (34)
where p = _%,q =0and r = _%whereé > 0 as we assume A > 0 and w;, > 0.
Equation (34) can be rewritten in the so-called normal form by posing © = z — p/3 as

follows:

2 4+az+b=0, (35)
where a = 3(3¢ — p?) = _sz and b = 5(2p* — 9pq + 27r) = = (2p® + 27r). Under
the condition E + 5 “3 > (, Equation (35) has one real root and two conjugate imaginary
roots. This condltlon boils down to ; (2p + 27r)? — p® > 0, which holds if p < 0
and r < 0. By further assuming a > 0, these two conditions on p and 7 hold per the

definitions of p and r given b nonnegative and since ¢ > 0. Therefore, the positive real
root has the following closed-form expression:

s/ b b2 a3 s/ b b2 a3
Z—\/—§+ Z+2_7+\/_§_ Z+2—7, (36)

6 2
Wy, = (z + 3_6) , (37)

In matrix form, we obtain the following update

W= [z+%]

and hence

Al ] (1/2)]~(1/3) n [__B B [& Ll ] (1/2)]~(1/3) A

whereZ:[—+[] +27 2 4 27 ’

B ]? B i
] ,BZQA?@[L] +27l8), B =22, C = s BT 422, with

[-C] [-C] (WH]-(1/2) W]

E denoting a matrix full of ones of appropriate size, and A = [W] B2 <[WI£I]%H T) .
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